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Abstract Document subjectivity analysis has become an important aspect of web text content mining. This problem is
similar to traditional text categorization, thus many related classification techniques can be adapted here. However, there
is one significant difference that more language or semantic information is required for better estimating the subjectivity of
a document. Therefore, in this paper, our focuses are mainly on two aspects. One is how to extract useful and meaningful
language features, and the other is how to construct appropriate language models efficiently for this special task. For the
first issue, we conduct a Global-Filtering and Local-Weighting strategy to select and evaluate language features in a series
of n-grams with different orders and within various distance-windows. For the second issue, we adopt Maximum Entropy
(MaxEnt) modeling methods to construct our language model framework. Besides the classical MaxEnt models, we have
also constructed two kinds of improved models with Gaussian and exponential priors respectively. Detailed experiments
given in this paper show that with well selected and weighted language features, MaxEnt models with exponential priors
are significantly more suitable for the text subjectivity analysis task.
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1 Introduction

As the rapid growth of the Internet, billions of web
documents are available on-line. People need some bet-
ter organized information from such a huge web infor-
mation database. This has motivated the research into
techniques of automatic text categorization. In early
times, researches have been focused on so-called “topic
categorization”, i.e., given a document in text format,
a computer tells which already known topic (e.g., poli-
tics, economics, military) the document should belong
to. Recently, as more and more weblog, review and
shopping sites appear, people are not only satisfied to
know what kinds of things are there, but also eager to
know how others think about things (are they good or
bad?). How to make such requirements conveniently
have brought out a new research field, sentiment anal-
ysis. One important aspect of sentiment analysis is
document subjectivity analysis, which aims to tell peo-
ple whether an article about a particular thing is sub-
jective or objective. This technique maybe useful in

many areas of applications, for example, stock discus-
sion boards[1], blog sentiment[2], customer feedback[3],
product and movie review[4].

Most documents on these websites often tend to be
short (just one or two sentences, or even several words),
even too “tiny” to be viewed as articles. We would like
to view them as short texts or text snippets. These
phenomena bring out a first challenge on how to mine
efficient language features from such short web texts.

In this paper, the movie review dataset① being stud-
ied on is comprised of ten thousand text snippets ex-
tracted from websites. To mine as much meaningful
language features as possible, under the well-known n-
gram model framework, we utilize various n-gram tem-
plates to capture language features with different orders
and within various distance-windows. Additionally, we
then conduct a Global-Filtering and Local-Weighting
strategy to select and evaluate these language features.

On the other hand, a main difference between sub-
jectivity classification and traditional top-based cate-
gorization is that while topics can often be identified
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by some individual literal features, subjectivity is more
latent in contexts. Thus, more sophisticated language
features may be employed. This problem arises the sec-
ond challenge on language information fusion, which
can be defined as constructing appropriate language
models that can efficiently combine all kinds of lan-
guage features. Fortunately, in recent years, there are a
lot of studies on Maximum Entropy (MaxEnt) models,
which can combine almost all kinds of information into
an individual probabilistic model, especially in natural
language processing (NLP) field[5,6]. Thereby, we adopt
MaxEnt modeling methods to construct our language
model framework. Besides the classical MaxEnt model,
we have also tried two improved models with Gaussian
and exponential priors respectively to make the models
more suitable for the text subjectivity analysis task.

The remainder of this paper is organized as fol-
low. In Section 2, a briefly review of previous work
on text categorization and sentiment classification is
introduced. How the n-gram based language features
are extracted and weighted are described in Section 3.
Then, in Section 4, how the Maximum Entropy lan-
guage models are constructed and how the priors are
applied are introduced. Experiments and results are
reported in Section 5. At last, conclusions are derived
in Section 6.

2 Previous Work

2.1 Topic-Based Text Categorization

The subjectivity analysis problem can be traced
back into traditional topic-based text categorization,
which is to classify a document into a pre-defined cat-
egory by computers automatically. In such cases, doc-
uments are usually represented as vectors of individ-
ual text features that can be readable by computers.
Based on such representations, various machine learn-
ing approaches, such as probabilistic algorithms, neu-
ral networks, regression models, nearest neighbor clas-
sifiers, Bayesian probabilistic classifiers, decision trees,
inductive rule learning algorithms, profile-construction
methods, sample-based classifiers, support vector ma-
chines, and classifier committees[7,8], can be applied
to construct some classifiers on corresponding training
datasets.

The problem of subjectivity analysis can also be
viewed as a special categorization task, where categories
are “subjective” and “objective” labels.

2.2 Sentiment Classification

Pang et al. reported their early work on document

polarity classification in [9] and their improved work in
[10]. In their early experiments, they used 700 posi-
tive and 700 negative reviews and evaluated their clas-
sifiers by several 3-fold cross validations. They have
used unigrams (with term frequency and Boolean value
as feature weight respectively), bigrams, unigrams +
bigrams, unigrams + POS (Part of Speech), top un-
igrams (top 2633), as well as unigrams + position as
their language features respectively. From their senti-
ment classification accuracies reported in [9], we have
found some unexpected but interesting results.

1) The best result was obtained while using unigram
features with Boolean values (present or absence) other
than unigram with term frequency values. This is some-
what different from those cases in topic categorization
task, in which term frequency is always a kind of most
useful feature attributes.

2) Using bigram + unigram features is worse than
merely using unigrams. This is against our intuitions,
for there are so many phrases or component words con-
sisting of two or more words expressing significant emo-
tion tendencies, while do not their component words.
For instance, “how could. . .” is often of strong empha-
sis tone, while “how” and “could” are mostly used as
neuter words.

3) Using the top 2633 unigram features even does
no worse than using those all 32 330 unigram + bigram
features, but is slightly worse than using all 16 165 un-
igram features. How to extract a small amount of fea-
tures carrying the most useful information will be a
practical problem.

Corresponding to these issues, we have carried out
some studies on subjectivity classification as reported in
[11]. In our previous work, we have tried three feature
weighting methods, Boolean, absolute-term-frequency,
and normalized-term-frequency. Models based on the
former two weighting methods performed similarly,
while models using the normalized frequencies obvi-
ously outperformed the former two kinds of models. In
addition, we have also investigated models with bigram
features added in, and the combining of high-order lan-
guage features within limited distance-windows leads to
obvious improvement on basic unigram feature based
models. Finally, the best result was achieved by a
model using normalized unigram and bigram features
within a 2-distance context window. This model will
be treated as the baseline in our current work.

3 Language Feature Extraction

Document representation plays an important role in
traditional topic-based categorization. In normal doc-
uments, there are always enough items to form term-
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vectors, while in short text snippets, fewer items are
there. Thus, we utilize n-gram language templates to
capture more sophisticated language features.

3.1 Language Features

Definition 3.1. A sentence T consisting of N in-
dividual sequential words appears as {w1, w2, . . . , wN},
then
• Conventional n-gram
Using a conventional n-order-gram (n > 1) tem-

plate, e.g., in bigram (n = 2), sentence T will have
a feature set {w1w2, w2w3, . . . , wN−1wN}.
• Long distance n-gram
Using an n-order-gram template with d-distance

back, for instance, in a 3-distance bigram model, the
feature set will be {w1w4, w2w5, . . . , wN−3wN}. While
the distance is set to 1, it becomes a conventional n-
gram template.
• N-grams within long distance-window
N-grams within d-distance-window mean that n-

order-gram templates with distances no larger than d
are all combined in, e.g., bigram feature set within a
3-distance-window would be:

{w1w2, w1w3, w1w4, . . . , wN−3wN ,

wN−2wN , wN−1wN}.

Huang et al. estimated a series of d-distance bigram
models for d = 1, . . . , 1000[12]. They concluded that the
history of the last 5 words contains most of the signif-
icant information. As a reference, we tested a series of
long distance-window based bigram features with the
maximum distance set to 5.

3.2 Feature Selection and Weighting

By using various n-gram templates, the original
amount of features will be too huge for an efficient doc-
ument analysis system. On the other hand, a great per-
cent of these language-grams are nothing but sequen-
tial words, which have neither language structure nor
semantic meaning. We will view them as spam items,
which must be discarded from our language models.
Additionally, different language-grams are of different
importance regarding to language functions and seman-
tic meanings, thus they could not be viewed identically.
Therefore, these original language features must be fil-
tered and evaluated. In other words, there are two pro-
cedures need to be perform, one is feature selection, and
the other is feature weighting.

In the MaxEnt framework (described in the next sec-
tion) used in our work, these two aspects are combined

together to a certain extent, for that whether a feature
is necessary and how important it is are all reflected
on its parameter assigned by the MaxEnt model. for
example, if a feature is redundant, then theoretically,
it will get a zero weight in the MaxEnt model, while a
significant feature receives a relatively high score.

However, we still think that the well selected and
weighted features may make MaxEnt models more effi-
cient. Thus, we applied some different feature selection
and weighting methods as described below.

In our previous work[11], the three feature weight-
ing methods reported are all directly based on the lo-
cal term frequency within an individual text snippet.
Therefore, the corresponding feature selection strate-
gies are simply as a feature elimination procedure that
is to discard those features appearing fewer times than
a threshold. Experimental results show that models
using normalized-term-frequency features work better
compared to those using Boolean value features.

Besides these local feature based methods, we intend
to utilize some global feature information to improve
feature extraction performance. In text categorization
and text retrieval, the TFIDF based method is the most
popular and basic text feature weighting method[7,13].
A standard definition form of TFIDF is:

tfidf (tk, di) = tf (tk, di)× log
( |D|

df (tk)

)
.

Wherein, tk stands for a feature term, di indicates the
i-th document in the whole document set D, tf (tk, di)
is the Term-Frequency (TF) defined as the number of
times that term tk occurs in document di, while df (tk)
is the Document-Frequency (DF) denoting how many
documents in D does term tk appear in, and |D| is the
total number of documents in set D.

In our work, we used a modified TFIDF form as:

tfidf (tk, di) =
√

tf (tk, di)× log
( |D|

df (tk)

)
. (1)

In this formula, the square root of tf (tk, di) is adopted
instead of the original term frequency. This makes a
smoothing to terms with high frequencies, and leads
to a more balanced feature space consisting of different
n-grams, for that unigram terms obviously have much
more occurrence opportunities than high-order grams.

In addition, as it has been done in many previous
work[7], to make term weights independent of the sizes
of document, a cosine-normalization has been applied
to make new weight values in [0, 1] interval, formulated
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as

w(tk, di) =
tfidf (tk, di)√ ∑

tk occurs in dj

(tfidf (tk, di))2
. (2)

Based on the TFIDF weights of each feature, we con-
duct a Global-Filtering and Local-Weighting strategy
to implement feature filtering and weighting.
• Global-Filtering
After having got the original statistics on TF and

DF of each term, we view that all texts in set D com-
pose a Big-Document, and compute a global significant
indicator W (tk, D) for each term tk using (1) and (2),
with the factor tf (tk, di) in (2) being substituted by a
global TF factor defined as TF (tk, D) =

∑
i tf (tk, di).

Having W (tk, D) for each term tk, we can apply feature
selection by setting a threshold on global weight value,
as reported in our experiments later.
• Local-Weighting
To generate the features of each document di (indi-

vidual text snippet here), we first get all the possible
language-grams according to the n-gram templates be-
ing adopted. These candidates are filtered by using the
Global-Filtering strategy just mentioned. After that,
those qualified features are weighted by the local value
w(tk, di) defined in (2).

4 Language Model Construction

In our subjectivity analysis task, language features
are with different orders and various distances. We
adopt the MaxEnt method to construct our language
model framework.

4.1 Maximum Entropy Model

MaxEnt models are very strong tools handy for
statistical estimation and pattern recognition related
fields, as introduced in [6, 14]. These models are a kind
of the exponential models with some interesting math-
ematical and philosophical properties. Given an obser-
vation sample set X and label set Y , for each sample
x ∈ X, its probability of being assigned label y ∈ Y
estimated by a MaxEnt model is:

pΛ(y|x) =
1

Z(x)
exp

( ∑

i

λifi(y, x)
)
. (3)

Wherein, Z(x) =
∑

y∈Y exp
( ∑

i λifi(y, x)
)

is a nor-
malization factor, which makes p(y|x, λ) a conditional
probability. The factor fi(y, x) is a Boolean indication
function representing a feature based on (y, x). For

example, in the subjectivity classification task, a sig-
nificant feature function fi(y, x) is

fi(y, x) =





1, y = “subjective”, x = “ . . . , but . . . ”

(disjunctiv clause structure);

0, else.

Λ = {λi} is the parameter vector, and λi is feature
fi’s weight parameter indicating the importance of fi

in a MaxEnt model.
As mentioned in the last section, the weights of lan-

guage features we used are positive real numbers, not
Boolean values as described in the expression above.
Fortunately, in [14], which is a cornerstone of the Max-
Ent theory, Della Pietra et al. demonstrated that a
MaxEnt model would be constructed applicably when-
ever the feature functions fi are nonnegative. This
characteristic allows us to combine the TFIDF-based
feature extraction methods into MaxEnt modeling by
simply replacing the Boolean value with a real value.

4.2 Maximum Entropy Modeling

From (3), it can be noticed that as long as the fea-
ture set is fixed, a MaxEnt model is entirely determined
by the parameter vector Λ = {λi}. Thus, to construct
a MaxEnt model is to estimate the parameter vector
Λ = {λi}, so that the MaxEnt model fits the dataset
the best.

In [14], it is introduced that one most important
property of MaxEnt models is the constraint satisfac-
tion on observed data. For each indication function
fi(x, y), let p̃(x, y) be the empirical distribution of sam-
ple (y, x), then the empirical expectation of fi(x, y) is
defined as:

Ẽ(fi) =
∑

x∈X,y∈Y

p̃(x, y)fi(x, y).

the expected value of fi estimated by the MaxEnt
model as:

E(fi) =
∑

x∈X,y∈Y

p̃(x)pΛ(y|x)fi(x, y).

Wherein, p̃(x) is the empirical distribution of sample
x, and pΛ(y|x) is the conditional distribution of (y, x)
estimated by the MaxEnt model.

MaxEnt models require constrains on fi that

E(fi) = Ẽ(fi), for all fi. (4)

On the other hand, another important constrain is
that MaxEnt models try to remain as similar to the uni-
form distribution as possible. With these constrains, a



Bo Chen et al.: MaxEnt Models for Subjectivity Analysis 235

MaxEnt model is trained to find the most suitable pa-
rameter vector Λ = {λi} that maximizes the likelihood
over the dataset, and the optimization object function
will be:

arg max
Λ

Pr(p̃|p) = arg max
Λ

∏

x∈X,y∈Y

pΛ(y|x)p̃(x,y)

= arg max
Λ

∑

x∈X,y∈Y

p̃(x, y) log(pΛ(y|x)).

(5)

4.3 Priors on Maximum Entropy Models

Like most models trained under the maximum likeli-
hood principle, MaxEnt models also involve in the over-
fitting problem[15]. Firstly, this is obviously caused by
constrains expressed in (4). This can be solved to some
extent by applying some smoothing techniques that are
widely used in language modeling areas[16]. Further-
more, from the maximum likelihood estimation princi-
ple, it can be noticed that “Maximum likelihood esti-
mation is just a degenerate form of Bayesian modeling
where the prior over models p (here refers to pΛ(y|x))
is uniform” (Berger[17]). This could be illustrated as
follows.

Finding the model that matches the empirical
distribution the best can be formulated as solving
arg maxΛ Pr(pΛ|p̃). By using Bayes’ law, we get

arg max
Λ

Pr(pΛ|p̃) = arg max
Λ

Pr (p̃|pΛ)Pr (pΛ)
Pr (p̃)

= arg max
Λ

Pr (p̃|pΛ)Pr (p̃|pΛ).

Assuming Pr (p) is uniform, then

arg max
Λ

Pr(pΛ|p̃) = arg max
Λ

Pr (p̃|pΛ).

From the above two formulations, it can be seen
that in the maximum likelihood estimation method, the
prior Pr(pΛ) of each possible model pΛ(y|x) is lost.

Recently, many researchers have paid great atten-
tions to the priors on MaxEnt models. Chen and
Rosenfeld[18] have implemented a Gaussian prior with
0 mean for MaxEnt model on language modeling task,
and concluded that it was consistently the best com-
pared to previous n-gram smoothing methods. With
a Gaussian prior on the parameter λi as p(λi) =

1√
2πσ2

i

exp
(− λ2

i

2σ2
i
), the object function (5) becomes

arg max
Λ

Pr(p̃|p)Pr (p)

= arg max
Λ

∏

x∈X,y∈Y

pΛ(y|x)p̃(x,y)

×
∏

i

1√
2πσ2

i

exp
(
− λ2

i

2σ2
i

)

= arg max
Λ

∑

x∈X,y∈Y

p̃(x, y) log(pΛ(y|x))−
∑

i

λ2
i

2σ2
i

.

Such a model is aimed at maximize posteriori instead
of maximum likelihood on parameter values. Besides,
the Gaussian priors will also lead to changes on the
feature function constrains (4) as

E(fi) = Ẽ(fi)− λi

σ2
i

, for all fi.

From this expression, it can be found that the Gaus-
sian priors in fact add some discounts on the original
constrain of fi, which result in a typical smoothing ap-
proach.

Kazama et al.[19] explored a MaxEnt model with
box-type inequality constraints to relax the equality
constrains defined by (4) as

Ai > Ẽ(fi)− E(fi) > −Bi, Ai, Bi > 0, for all fi.

This optimization with inequality constraints results
in sparse solution, so that features with a zero param-
eter can be removed from the MaxEnt model. They
concluded that the inequality MaxEnt model embedded
feature selection in its estimation and the sparseness of
the solution improved the robustness of the MaxEnt
model as well.

In fact, the inequality MaxEnt model is just like
a MaxEnt model with Laplace priors, which is simi-
lar to models with exponential priors (i.e., single-side
Laplace priors), as introduced by Goodman in [20].
Assuming an exponential prior on parameter λi as
p(λi) = µi exp(−µiλi), the object function of a Max-
Ent model becomes

arg max
Λ

Pr(p̃|p)Pr (p)

= arg max
Λ

∏

x∈X,y∈Y

pΛ(y|x)p̃(x,y)

×
∏

i

µi exp(−µiλi)

= arg max
Λ

∑

x∈X,y∈Y

p̃(x, y) log(pΛ(y|x))−
∑

i

µiλi.

The priors also make changes on the constrains as
{

E(fi) = Ẽ(fi)− µi, λi > 0

E(fi) > Ẽ(fi)− µi, λi = 0
, for all fi.

Such constrains lead to bounded absolute discounting
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by constants. Goodman showed that exponential priors
could also lead to a simpler learning algorithm.

In our view, which prior is better should be deter-
mined by data. From the conditional MaxEnt model
defined in (3), it can be found that the prior proba-
bilistic distribution Pr(pΛ) of a model pΛ is the function
of parameter vector Λ = {λi}, i.e., Pr(pΛ) = Pr (Λ).
While each λi corresponds to a unique feature func-
tion fi, we may assume that the distribution of model
pΛ is similar to the distribution of feature fis over the
dataset. Taking this viewpoint, we have tried MaxEnt
models with the two kinds of priors compared to the
normal MaxEnt model, which is in fact with uniform
priors, to find out which priors are more suitable to
the models on subjectivity classification task. Detailed
experiments and analysis are given in the following sec-
tion.

5 Experiments

5.1 Dataset and Toolkit

The subjective/objective corpus we used here was
obtained from Pang’s webpage (see footnote ① in Sec-
tion 1), which was first used by them in [10]. This
dataset consists of 10 000 movie review sentences or
snippets, 5000 labeled objective and 5000 labeled sub-
jective. The objective ones were taken from plot
summaries of the Internet Movie Database (IMDb)②,
and the subjective ones were retrieved from ROT-
TEN TOMATOES website③. We measured the per-
formances of different methods mentioned above using
3-fold cross validations.

All the implementations of MaxEnt models reported
in this paper are modified on the basis of SS MaxEnt
toolkit④.

5.2 Evaluation Measure

Subjectivity analysis task being studied in this paper
can be viewed as a special binary (subjective/objective)
classification. Referring to the TREC spam track⑤,
which is a similar binary (ham/spam filtering) classifi-
cation task, we adopted the Logistic Average Misclassi-
fication Percentage (LAMP)[21] as our evaluation mea-
sure. The LAMP to our task is defined as:

lam% = logit−1(logit(subm%) + logit(objm%)).

Wherein, logit(x) = log x
1−x , and its inverse function

logit−1(x) = ex

1+ex . The two factors subm% and objm%
are the misclassification percentages of subjective and
objective samples respectively. The lower labm% value,
the better classifier.

5.3 TFIDF-Based Feature Extraction
Methods

The result reported in our previous work[11] are listed
in Table 1, the best result is LAMP 0.10845, which was
achieved while using normalized unigram and bigram
features within a 2-distance context window. This value
will be treated as the baseline to the following experi-
ments.

Table 1. Results Reported by Chen et al. in [11]

LAMP Average Minimum Maximum

UNI 0.12315 0.11116 0.13563

LB1 0.12255 0.11318 0.13089

LB2 0.12216 0.10845 0.13106

LB3 0.12449 0.10948 0.13178

LB4 0.12518 0.11122 0.13974

LB5 0.12846 0.11830 0.14286

Using the TFIDF-based Global-Filtering and Local-
Weighting strategy, we constructed three series of nor-
mal MaxEnt models according to three different kinds
of feature sets respectively. The first feature set only
contains unigram language features, denoted by “UNI”
in the following description. The second set are with
bigram features added in, denoted by “UB” hereafter.
The third one consists of unigram, bigram and trigram
language features, denoted as “UBT”. On each feature
set, we implemented a series of feature extractions ac-
cording to a sequence of incremental threshold values on
the global TFIDF weights. The performances of those
three series of MaxEnt models are shown in Fig.1, com-
pared to the baseline value.

From the results shown in Fig.1, it is obvious that
the TFIDF-based feature weighting method is much
better than the normalized-frequency-based methods,
which only make use of local information of language
features within individual text snippets. On the other
hand, while feature filtering is applied according to
some threshold values, the performances of models on
both UB and UBT sets get improved. This illustrates
the effectiveness of our Global-Filtering and Local-
Weighting strategy on language feature extraction. As

②http://www.imdb.com/
③http://www.rottentomatoes.com
④From Tsujii laboratory, at University of Tokyo, on http://www-tsujii.is.s.u-tokyo.ac.jp/∼tsuruoka/maxent/
⑤http://trec.nist.gov/tracks.html
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the threshold value goes beyond 0.005, performances
on each set drop down sharply. At this point, there are
nearly 66% of the overall language features remained in
UNI set, while there are merely 18% and 8.7% in UB
and UBT sets respectively. This may indicates that
most useful language features are going to be deleted
while a stricter filtering is applied. It may also be con-
cluded from the results that many redundant features
get global TFIDF weights less than 0.003.

Fig.1. TFIDF-based feature extractions.

Another important point is that the combination
of high-order language features, like bigrams and tri-
grams, is certain to improve the MaxEnt models. This
is consistent with the results reported in [11].

5.3 Maximum Entropy Models with Priors

Besides the language feature extraction, we are also
interested in the language modeling. As mentioned in
Subsection 4.3, we will investigate MaxEnt models with
three kinds of priors to find out with which kinds of pri-
ors on, the MaxEnt models satisfy the subjectivity clas-
sification task the best. For this purpose, firstly, we will
analysis the distribution of the language features over
the dataset to find out the optimal prior. We made a
simple statistics on the distribution of term frequencies
in the UNI feature set, as displayed in Fig.2.

It is obvious that the distribution of the unigram lan-
guage features fi is a typical exponential distribution.
For that the importance of language features, which
are reflected by the parameter λis assigned by a Max-
Ent model, are mainly represented by their occurrence
frequencies. Therefore, we may assume that the prior
distribution of the parameters is also exponential.

We have constructed MaxEnt models with uniform
priors, Gaussian priors and exponential priors respec-
tively, and applied them to the three feature sets to

make complete comparisons, as shown in Figs. 3∼5,
wherein “UNF” stands for the uniform prior, “GAU”
for Gaussian prior, and “EXP” for exponential prior.

Fig.2. Distribution of term frequency in UNI set.

Fig.3. Models with different priors on UNI set.

Fig.4. Models with different priors on UB set.
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Fig.5. Models with different priors on UBT set.

In the comparisons on three feature sets, the Max-
Ent models with exponential priors significantly surpass
the models with other priors. Meanwhile, models with
Gaussian priors even do no better than the normal Max-
Ent models. This illustrates that the exponential prior
fits the parameter distribution well. To make a further
confirmation, we make another statistics on the distri-
bution of parameter λis’ values of the MaxEnt model
with uniform priors trained on the UNI feature set, for
that such a MaxEnt model is without particular priors,
its parameter values would reveal the real distribution.
To make the statistics realizable, we first perform a
quantizing on λis’ values with an interval step of 0.1.
As shown in Fig.6, regardless of the polarity of values,
the distribution of the parameter values is obviously ex-
ponential. This strongly backs up the conclusion that
MaxEnt models with exponential priors are more suit-
able for the subjectivity analysis task.

Fig.6. Distribution of Parameter values of the MaxEnt model

with uniform prior trained on UNI set.

5.4 Comparison of Different Language
Features

Since the superiority of the MaxEnt models with ex-
ponential priors has been illustrated, the following ex-
periments are all based on them. As mentioned in Sub-
section 2.2, there are some interesting issues reported
in previous works. In this section, we will investigate
more kinds of features, mainly on bigrams within long-
distance-windows. Experimental results are listed in
Table 2.

Table 2. Comparison of Different Language Features

Best LAMP Improvement

Baseline 0.108 45 –

UNI 0.088 67 18.24%

UB1 0.081 46 24.89%

UB2 0.083 31 23.18%

UB3 0.083 26 23.23%

UB4 0.084 91 21.71%

UB5 0.085 11 21.52%

UBT 0.081 88 24.50%

In this table, “UBd” indicates that the feature set
is comprised by unigram and bigram language features
within a d-distance-window. Results listed in this ta-
ble are the best ones on each feature set with a series
of thresholds. Once again, the results show that high-
order language features can improve the performances
of models. However, in our previous work[11], the best
models was trained on the feature set corresponding to
“UB2” here, while results here show no improvement
are achieved as long-distance language features being
added in. This is a little confused, and we will try to
find the reason.

6 Conclusions and Future Work

In this paper, we make a case study on construct-
ing language models for document subjectivity analy-
sis. Emphasizes are put on language feature extraction
and language modeling. On the basis of TFIDF weight-
ing scheme, we conduct a Global-Filtering and Local-
Weighting strategy to improve language feature extrac-
tion. While constructing language models, we utilize
the Maximum Entropy framework and put some priors
on to make models more suitable for the task. Ana-
lyzing the experiments, we think that using high-order
language grams within context windows and applying
exponential priors on MaxEnt models will be quite help-
ful.

Our work is still worth further studying. The n-gram
based feature representation is useful but not delicate
enough, more sophisticated language features may be
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useful to particular kind of documents, and more nat-
ural language processing techniques are needed. There
is still some room to improve MaxEnt modeling. And
also, some other machine learning algorithms can be
applied to construct language models.
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